
CHI: A General Agent Communication Framework1

Laurence R. Phillips, Steven Y. Goldsmith, & Shannon V. Spires

Sandia National Laboratories
Albuquerque, NM 87185

lrphill, sygolds, svspire@sandia.gov
505-845-8846, -8926, -4287

Abstract: We have completed and exercised a communication framework called
CHI (CLOS to HTML Interface) by which agents can communicate with humans.
CHI follows HTTP (HyperText Transfer Protocol) and produces HTML (HyperTest
Markup Language) for use by WWW (World-Wide Web) browsers. CHI enables the
rapid and dynamic construction of interface mechanisms. The essence of CHI is
automatic registration of dynamically generated interface elements to named objects
in the agent’s internal environment. The agent can access information in these
objects at will. State is preserved, so an agent can pursue branching interaction
sequences, activate failure recovery behaviors, and otherwise act opportunistically to
maintain a conversation. The CHI mechanism remains transparent in multi-agent,
multi-user environments because of automatically ganerated unique identifiers built
into the CHI mechanism. In this paper we discuss design, language, implementation,
and extension issues, and, by way of illustration, examine the use of the general
CHI/HCHI mechanism in a specific international electronic commerce system. We
conclude that the CHI mechanism is an effective, efficient, and extensible means of
the agent/human communication.

Introduction

Communication underlies and forms a context for community. Although the World-Wide Web
(WWW or just “the Web”) forms an extensive digital community, communication mechanisms are
often laboriously hand-built, application-specific and not very flexible. Agents promise to alleviate
this difficulty by providing personal guides that either understand humans, understand their
environments, or both; at a minimum, such agents will understand how to communicate using the
available media: e-mail, fax, and most importantly the Web.

The key to making this work in practice is the establishment of appropriate abstraction barriers and
the factoring of capability into more-readily maintained components. In particular, we advise
against agents with monotlithically embedded comunication mechanisms. A plug-in or mix-in
capacity to use whatever media may be available is more robust and easier to manage and maintain.
This approach encapsulates the means of communication and keeps it independent of the agent’s
reasoning means. The means—methods specialized on multiple inputs, classes modifiable at
runtime, multiple inheritance—are available in modern dynamic languages. This approach also
scales well across the important dimension of language type. We examine this issue during
discussion of the international electronic commerce system, in particular how information from
several sources in several private business dialects is incorporated into the mechanism.

We have developed CHI (CLOS-to-HTML Interface), a class/method hierarchy that enables
communication between agents and humans. The information moving between the user’s web
browser and the agent during communication consists of objects transformed into Hypertext
Markup Language (HTML). These objects are “carriers” of information and allow the user to have
the illusion of direct interaction with the agent. The agent, on the other hand, relies on a set of
independent performatives, such as those expressible in KQML ([Finin et al. 93], [Finin and Labrou
1 This work was performed at Sandia National Laboratories, which is supported by the U.S. Department of Energy

under contract DE-AC04-94AL85000
page 1

mailto:svspire@sandia.gov

97], and [Finin et al. 97]). The conversion between an internal object representation and KQML
would allow agents to communicate with one another in much the same way that CHI enables
communication between agents and humans. This paper focuses on agent/human communication;
however, we discuss extension to other communication channels in the “Extension to other
languages” section.

How CHI works

From the user's point of view, the user hits the “submit” button of a form or clicks an anchor, the
browser says “Host contacted; waiting for reply ...”, and shortly a (new) page is displayed on the
user's browser.

The agent with whom the user is communicating must receive the message sent by the user (which
implies that some connectivity must exist between users and agents in multi-user multi-agent
situations), generate a response specifically for that user (which implies that the message must be
identified as having come from the user), and send the response back to the user (which implies that
the agent must have some connection with the user).

CHI must therefore enable the agent to transmit a page to the user's browser in response to each
form submission or anchor click (POSTs and GETs, in HTTP terms). In this paper, we use the term
“post/get” to refer to any such transmission.

This is accomplished by the following cycle, illustrated in Figure ##:

1. CHI creates and initializes a page object instance.

 The appropriate class is instantiated based on the class of the message object being
transmitted. Message component objects are similarly converted into sub-page elements.

2. CHI translates the page object instance into an HTML stream.

3. CHI entrains the ACGI mechanism to the intended recipient’s input channel.

3. The recipient takes some action that returns a message to the CHI application.

The Web server receives the GET/POST and sends it to the CHI application via the ACGI
mechanism.

4. CHI extracts the identifier from the message and uses it to acquire the object instance from
which the page instance was generated.

5. CHI places information from the message into the page instance.

6. CHI executes relevant methods and functions to produce the next page instance. At this
time, objects can be created, changed, placed into, or retrieved from the session; and
information from these objects can be used to formulate the next page and/or to control the
application.

7. CHI links the old page instance and the new page instance together to maintain session
continuity.

8. The cycle begins again with the new page instance.

page 2

Agent
corpus

Human object
(agent’s representation
of the human)

message object
(agent’s representation)

AAAA

BBBB
Note the information
containers are
exclusive-dependent
to the message object

Create page (__ , __)

= object class

OID

tag 1

tag 2

AAAA

BBBB

CHI method dispatches
on two classes

1. Agent sends performative “send this message (object) to this human (object)”
2. CHI creates page object with embedded message objects
3. CHI generates HTML with OID (object identifier) and tags
4. Human modifies information and returns page to CHI
5. CHI reads information from text and registers with object using OID and tags
6. Modifications to objects are instantly visible to agent

OID

AAAA

BBBB

tag 1

tag 2

OID

AAAA

CCCC

tag 1

tag 2

user modifies
information

CHI
generates

HTML

CHI instantiates
page object

class of interface,
not class of human

CHI extracts tagged data and modifies
the object at the OID. Note that this is
the same object that’s in the agent’s
message object.

tag 2CCCC

Figure 1. The CHI information cycle from Agent to human and back
page 3

Developing applications using the CHI methodology

CHI is a set of classes and methods. Instantiation of the CHI classes creates objects that are able to
render themselves as HTML. The highest-level objects result in pages or frames whose components
contain the information being communicated. An agent can read or update this information at will.
Nested objects are called recursively and generate serial HTML that maintains the nesting. The
HTML contains tags and names that enable CHI to identify and update the source objects when
information from a CHI-generated page is returned to the server. Input sites in the HTML are
automatically named so that CHI can retrieve the individual information values and update the
original objects.

CHI automatically maintains program state and provides continuity for multiple simultaneous user
sessions by linking together dynamic objects that represent pages and sessions. This solves the
problem of operating a stateful application with a stateless browser. CHI supports workgroup
computing on the Web because the CHI process maintains multiple user states simultaneously and
non-synchronously.

The designer of an agent communication interface has two primary tasks: (a) To define the class
structure of the objects that constitute the interface and (b) To write the runtime methods that:

• Translate information from the user into a syntax that the agent understands,
• Send a performative (or performatives) to the agent that contain the translated information,
• Receive the agent’s response,
• Convert the agent’s response into HTML, and
• Return the HTML to the user.

The design methodology is to create a set of classes, initialization mechanisms, and methods that
“glue” the agent and the user’s Web browser together. CHI provides base classes and functionality.
The designer creates classes that inherit from and specialize the CHI classes to add look and feel,
application-specific organization, run-time results, and so on.

CHI provides the builder of a communication interface a set of classes whose instances can convert
themselves into HTML. To assist in this process we have developed a software mechanism that
converts an HTML structure into a class definition and an initialization function that creates the
appropriate nested CHI instances. This mechanism is called HCHI (HTML to CHI). In this paper
we focus on the CHI mechanism and reserve disscussion of HCHI.

The designer of a CHI application specializes these classes, writes methods for initializing their
instances, and defines methods for handling the possible inputs. These define the structure and
behavior of the browser pages that the user will see. The actual page contents are determined, and
the page instances constructed, at run time. CHI thus turns the Web into a dynamic computing
environment.

Interfaces with many interactive and inter-related Web pages can be created in a few hours.
sufficient information to enable an object-oriented framework internal to the agent to instantly and
accurately register with and reference its internal representations of the human and the relevant
instance variables on the page, and the variables’ current values. This process is automatic; the
agent merely receives message notification and updated objects without further reference to HTML
or HTTP syntax, which is fully encapsulated within CHI. Formulation of a response is also entirely
internal to the agent and independent of HTML. At output time the agent merely emits a response
(from its point of view) and CHI generates a new web page instance dynamically, so there is never
an html file anywhere in the system (with the possible exception of an initial template, which can
also be generated by an agent at the initiation of a contact).

page 4

Extension to other languages

CHI provides a set of foundation classes that represent pages, forms, and widgets. Instances of these
classes translate themselves into HTML at run-time for Web consumption. CHI classes are
hierarchically organized and available to the designer for specialization, along with their inherited
methods.

Updating CHI itself to support changes in HTML or HTTP, or extending CHI to wholly different
interface languages, is conceptually straightforward because the language specifics are factored into
methods specialized on the interface class. This also means that different versions of HTML and
different interface languages can be supported simultaneously by a single running CHI server.

At this time, agents equipped with CHI can communicate only with humans. We have used multi-
methods, however, which allows extension to classes of recipients other than humans.

The link between the agent’s own internal language and that of the recipient resides in multi-
methods, that is, methods specialized on multiple classes. The specializing classes are the output
message class and the recipient’s interface type (see Figure 1). Invariant semantic content is
embedded into a stream of the appropriate syntax as the message object is converted by the
appropriately specialized method regardless of the language.

We expect to create a mechanism similar to the existing HTML method but based on KQML to
enable agent-to-agent communication. This task would consist in creating a message for each
message class of interest but specialized on the new interface class. The task should proceed
independently of the agents’ reasoning mechanism because the types of messages and their
semantic content shouldn’t change.

page 5

Maintain
Session
Object

Link
Pages

View
as

Interface

Handle
Client

Request

SDOC
Handler

Decide
Page
Type

Ensure
Next
Page

Sessions Pages Files

WWW

Ensure
Next Page

Object

Execute
Selected

Command

selected
command

user
request

result
objects

result
objects

existing
page info

next
page

object

linked
next
page

object

HTML
page

SDOC
event

client
request

new
page
info

updated
 page

 object

Issues in developing CHI/HCHI

Stateless environments

A stateless process is one whose state never differs from its startup state; a process whose state can
differ from its startup state is stateful. Any display process is thus stateful, because the display
changes. Such state changes, however, do not affect the behavior of the browser mechanism. For
the purposes of this paper, we distinguish state changes that can affect the behavior of the stateful
mechanism as affective and those that do not as nonaffective. Changing the channel on a television
set is affective; sending a different set of scan lines to its display in nonaffective. When mechanism
“A” is unable to cause a behavior change in mechanism “B”, A is nonaffective with respect to B.

Page servers are nonaffective with respect to Web browsers, by design, because the behavior of the
browser is totally independent of page content. No state of the server is allowed to result in anything
more or less than a displayable page of text, even unrecoverable errors.

Server nonaffectiveness raises some significant issues in using a browser as a client. One is that the
display of the browser is updated only at the request of the user; this is the requested-update-only
problem. Another is evident in browsers that retain multiple active display states. Together, these
mean that not only can the client display show incorrect information about the server state, but also
that the server can get requests from the client that reflect neither its own state nor its model of the
client state. In short, it's very easy for the server and the client to get de-synchronized, especially
when the user enters the act. Together these result in a severe integrity problem; the browser

page 6

commands can readily cause damage to server data structures if they're inappropriate to what data
are actually present.

This difficulty doesn’t arise in the nominal client-server model; on the client side, the display is is
slaved directly to the client, so that when the client state changes, so does the display. The client
behaves just like any other standalone program. Furthermore, the client is nonaffective with respect
to the server, which merely executes requests with no knowledge of client state (excepting, of
course, what is embedded in the requests). Any needed state information must be retained in the
client. As an aside, this is entirely satisfactory when the server is answering database queries,
because all query information can be retained in the client and transmitted in the request.

This model cannot be used when the server is constructive, that is, when the server builds a data
structure for the user. The server must retain state of what the user is doing; the state is, in general,
too complex to include in every user/server transmission as a parameter. In standalone applications,
this is not an issue because the display is slaved to the computing mechanism. In remote
applications, the server can “push” information to the client when the state changes.

The [server push] facility is becoming more visible on the Web as servers gain the ability to push
pages that were not specifically asked for to the browser. It is not under control of the client. Server
push can be useful in, e.g., continuous update situations. You essentially get several pages for the
price of one. It is also not currently possible for a server to push a page to a client unless an intial
request has been made. This enables pushed pages to go right through any proxy barriers because
they do have the requester tag. In particular, a server can't send a general page to a browser, then
later send another page if it feels like it. This is an undesireable approach because it allows the
server to gain control of the client, which is inherently dangerous. The client can abort the
download, but “getting more than you asked for” is contrary to the prominent usage of the browser.

In essence, then, the problem is that a nonaffective server (by extension, all Web servers), even if it
retains state and gets control of the browser, cannot affect the state of the browser. The browser, in
turn, cannot retain information about the computational state to enable the usual client/server
model, which assumes that state information resides in the client. Therefore, building large,
complex data structures for storage, retrieval, and later use seems to be impossible.

A designer wishing to use a stateless display as an interface into a stateful process must utilize a
mechanism that: (a) generates display instructions reflecting the process state (without loss of
generality, meaningful interaction with a stateful process implies that its state be observable) (b)
records the process state when display information goes out to the user, (c) preserves the state until
a response is received, (d) when the response is received, revives the appropriate process state, (e)
updates the process state as needed based on information in the response.

In a synchronous environment, b, c, and d are trivial, because the process simply waits while the
user responds to the display, which is to say, the user and the computational process act as lock-step
co-routines. The problem becomes more complex in the non-synchronous multi-user environment
because each step must be dealt with explicitly.

CHI provides (a) - (f) transparently to the interface designer. CHI does this by creating, at display
time, a unique instance that represents the page that the user is to see. CHI then sends sufficient
information to uniquely identify the instance to the user's browser, along with everything the user
sees. At response time (e.g., when the user submits a form that's on the page), that unique ID is
returned to the CHI Web server as part of the standard HTTP [Berners-Lee95-1] packet of
information (both "POST" and "GET" support this, and CHI deals correctly with both).

The receiving ACGI function dissects the HTTP message and translates the contents into CHI
terms. Among the received items is the unique identifier of the page instance from which the user's
browser page was generated. Since this page instance is unique, and can be accessed only by its

page 7

unique ID via this mechanism, the page instance not only preserves any relevant state information,
it also provides the uniquely retrievable reconnect point for responses from this particular user to
this particular state. From this page instance, all aspects of the process state that pertain to that user
are available and no aspects that don't pertain to the user are available.

Addressing the issues

How an Agent uses CHI

We have designed and built a Standard Agent Framework (SAF) that enables the ready construction
of classes of agents for carrying out distributed tasks. Applications to which we have applied the
SAF include international electronic commerce [Goldsmith et al.], robotic simulation, and multi-
agent web search. A primary component of these applications has been the standard sensory and
communication interface by which agents acquire information and communicate. In this paper we
focus on translation from the internal representation to HTML and back and on maintenance of state
information in a connectionless, stateless communication environment..

How a developer uses HCHI

Language facilities used by CHI/HCHI
Dispatch
Multimethods
Reader macros
Live class methods
Object Life Cycle Protocol

CHI/HCHI facilities used by the system
sessions
state preservation
Runtime Class definition

In 1997 the Advanced Information Systems Laboratory (AISL) at Sandia National Laboratories
completed a prototype of the Border Trade Facilitation System (BTFS), a collaborative information
processing environment that operates on the Internet and World-Wide Web. The BTFS comprises
multiple autonomous software agents that assist human actors in conducting international shipping
transactions by creating, documenting, monitoring and coordinating shipment transactions in
information space. The BTFS attacks the border-crossing problem in the three problem areas with
the highest potential for improving the border-crossing process: (1) manual entry of redundant
information throughout the process by different organizations; (2) incomplete regulatory
documents; and (3) lack of timely status information regarding the location of the vehicle and the
progress of the documentation. We discuss the conceptual design and implementation of the BTFS
in the remainder of this paper.

The BTFS design is based on three general concepts: (1) creation of a distributed object
programming environment with an underlying secure network infrastructure; (2) a distributed object
representation of a shipping transaction; and (3) insertion of knowledgeful software agents at
critical points in the information flow. Since the stakeholders in the border shipping domain are
geographically distributed independent organizations, the Internet provides a ready-made
communications infrastructure to integrate their operations. Using the open Internet as the
communications infrastructure accommodates any and every commercial organization with access.
Security is provided by public-key encryption and authentication techniques. Our initial approach
suggested that the Internet, with its high ramification and ubiquity, would be well suited for the
BTFS if security issues were addressed. We have solved certain security problems involving
financial transactions on the Internet, but that is a topic for another forum. Otherwise, the Internet

page 8

goes well beyond merely satisfying BTFS requirements; with the BTFS in place, one could conduct
international commerce from any site with an Internet connection and a web browser. The Web,
nearly as far-flung as the Internet itself, also suggested HTML as the lingua franca of the BTFS,
thus obviating the user interface dilemma and neatly solving the client end of the system. In the
BTFS, a highly specialized agent converts HTML from the client into the central ontology and
back.

Overlying the secure Internet is a distributed object programming system that provides a seamless
design methodology for networked object environments [Spires 1997]. The distributed object
system is essential to networking agents in a collaborative environment. Distributed object
technology also supports a shared fragmented workpiece object. The information needed to effect a
single shipment is captured in a complex distributed information structure with compositional
semantics called the Maquiladora Enterprise Transaction (MET). The components of a given MET
are distributed among the ECAs involved in a particular shipment. The MET is shared via proxy;
when a given agent needs information in the MET, it is handed the proxy to the MET. Since the
MET is distributed, no one agent or ECA has access to all components. Access is permitted based
on task requirements and controlled by electronic signature. BTFS agents interact with the border-
crossing process by collecting and organizing information and posting it in the MET. Control of the
distributed computation is decentralized and opportunistic. Each agent computes new information
components based on its internal knowledge base and the state of the MET . Changes in the
components trigger computations in a manner reminiscent of blackboard systems [Englemore and
Morgan 88].

[Finin et al. 93] Finin, T.; Weber, W.; Wiederhold, G.; Genesereth, M.; Fritzson, R.; McKay, D.;
McGuire, J.; Pelavin, R.; Shapiro, S.; and Beck, C. Specification of the KQML Agent-
Communication Language -- plus example agent policies and architectures, The DARPA
Knowledge Sharing Initiative External Interfaces Working Group, 1993,
<http://www.cs.umbc.edu/kqml/papers/kqmlspec.ps>

[Finin and Labrou 97] Finin, T. and Labrou, Y.; A Proposal for a new KQML Specification, TR CS-
97-03, Computer Science and Electrical Engineering Department, University of Maryland
Baltimore County, Baltimore, MD 21250, February 1997

[Finin et al. 97] Finin, T.; Labrou, Y.; and Mayfield, J.; KQML as an agent communication
language, in Jeff Bradshaw (Ed.), “Software Agents,” MIT Press, Cambridge, 1997

[Englemore and Morgan 88] Engelmore, R., Morgan, T., (Eds.). (1988). Blackboard Systems.
Addison-Wesley, Reading, Massachusetts.

[Goldsmith et al. 98] Goldsmith, S., Phillips, L., and Spires, S. (1998) A multi-agent system for
coordinating international shipping, submitted to Workshop on Agent Mediated Electronic
Trading (AMET’98), in conjunction with Autonomous Agents ’98, Minneapolis/St. Paul, MN
USA

[Spires 97] Spires, S. (1997). The DCLOS Distributed Object System, SNL AISL Technical Report

page 9

http://www.cs.umbc.edu/kqml/papers/kqmlspec.ps

